Milnor fibers over singular toric varieties and nearby cycle sheaves
نویسندگان
چکیده
We propose a new sheaf-theoretical method for the calculation of the monodromy zeta functions of Milnor fibrations. As an application, classical formulas of Kushnirenko [11] and Varchenko [23] etc. concerning polynomials on C will be generalized to polynomial functions on any toric variety.
منابع مشابه
Equivariant Primary Decomposition and Toric Sheaves
We study global primary decompositions in the category of sheaves on a scheme which are equivariant under the action of an algebraic group. We show that equivariant primary decompositions exist if the group is connected. As main application we consider the case of toric sheaves over toric varieties. Comparing these decompositions with primary decompositions of graded and fine graded modules ove...
متن کاملResolutions for Equivariant Sheaves over Toric Varieties
In this work we construct global resolutions for general coherent equivariant sheaves over toric varieties. For this, we use the framework of sheaves over posets. We develop a notion of gluing of posets and of sheaves over posets, which we apply to construct global resolutions for equivariant sheaves. Our constructions give a natural correspondence between resolutions for reflexive equivariant ...
متن کاملGraded Rings and Equivariant Sheaves on Toric Varieties
In this note we derive a formalism for describing equivariant sheaves over toric varieties. This formalism is a generalization of a correspondence due to Klyachko, which states that equivariant vector bundles on toric varieties are equivalent to certain sets of filtrations of vector spaces. We systematically construct the theory from the point of view of graded ring theory and this way we consi...
متن کاملSheaves on Toric Varieties for Physics
In this paper we give an inherently toric description of a special class of sheaves (known as equivariant sheaves) over toric varieties, due in part to A. A. Klyachko. We apply this technology to heterotic compactifications, in particular to the (0,2) models of Distler, Kachru, and also discuss how knowledge of equivariant sheaves can be used to reconstruct information about an entire moduli sp...
متن کاملHomogeneous Coordinates and Quotient Presentations for Toric Varieties
Generalizing cones over projective toric varieties, we present arbitrary toric varieties as quotients of quasiaffine toric varieties. Such quotient presentations correspond to groups of Weil divisors generating the topology. Groups comprising Cartier divisors define free quotients, whereas Q-Cartier divisors define geometric quotients. Each quotient presentation yields homogeneous coordinates. ...
متن کامل